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I. Introduction 

In 181 (see also [71) we suggested an algorithm €or solving dis- 

crete finite element systems arising froni positive definite problems of 

elliptic type and showed that it had very favorable properties. This . 
type of algorithm has come to be known as being of multigrid type and so 

we shall use this term here. A considerable amount of work has been done 

by others since submission of [8] for publication and we wish here to in- 

dicate some of this work. In the finite difference area there is compre- 

hensive (although not rigorous) work by Brandt [l], [ 2 ]  covering a large 

number of topics, including adaptive computation schemes. The basic tool 

used in these investigations is Fourier analysis and it is used to analyze 

not only the smoothing, but also the fine to corase and coarse to fine 

grid transfer operations of the multigrid method. 

area, in addition to work by Bank and Dupont 131, papers by Hackbusch [4], 

In the finite element 

[5], [6] extend the basic multigrid theorems to non self adjoint and other 

problems. This latter work is of an exceedingly theoretical character, 

largely because it addresses the difficult question of the effect of the 

regularity of the given problem on the multigrid algorithm. 

question was avoided by assuming triangulations such that the 

In [8] the 

L2 estimate 

(see below for notations) 
, 

i holds on each, where h is a mesh size parameter. The methods of [4] are 

thus of a different character from those of [8]. 

The purpose of the present note is to extend to a wider class of 

problems the O(N) type convergence results of [8]. The extension is to 



the indefinite case, i.e., nonsingular problems for which the operator 

has not only positive, but also negative eigenvalues (the Helmholtz 

equation is a second order example). 

fail when applied to such problems. True, they can in principle be 

solved by iterating with the discrete equations 

K KTVp = fp where up = KTVp (continuing to use the notations of [ 8 ]  

as we shall do throughout), where K is the system or stiffness matrix P 
of the finite element method. This is done, however, at the expense of 

squaring the condition numbers of the algebraic problem, with a conse- 

quent loss of convergence speed. Furthermore, such a least squares for- 

mulation while superfically attractive for use with Gauss-Seidel smoothing, 

may have rather poor smoothing properties. A s  it turns out, it is not 

necessary to use any new smoothing methods. The method of [ 8 ]  for which 

the iteration matrix is ( I - a K  ) may be used as may other schemes. The 

corrections from the coarse grids are sufficiently able to deal with the 

amplified low frequency error components, provided the algorithm is opera- 

ted sensibly. Our principal goal is to extend the two main results of 

[ 8 ]  so that they also apply to the new class of problems. 

fact, it is necessary only to alter one hypothesis and somewhat rework the 

proof of one theorem in [ 8 ]  in order to make the generalizations sought. 

Once this is done the two main results referred to above continue to hold 

verbatim. To repeat all the preliminaries, definitions and lemmas which 

lead to the theorem to be modified would mean an overly large amount of 

redundancy in the present note which we wish to avoid. Therefore, exten- 

sive references to [ 8 ]  cannot be avoided. For each of reference, we shall 

use exactly the notations of [ 8 ] .  The more important ones are given again 

The usual iterative methods will 

T K K up = KTfP 
P P  P 

or 

P P  P 

P 

A s  a matter of 

. 

rc 
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below, but  f o r  the  o the r s ,  espec ia l ly  a number of cons tan ts  occuring i n  

the  proofs ,  w e  must r e f e r  the  reader t o  t h e  o r i g i n a l  source.  

be assumed t h a t  t he  reader  i s  fami l ia r  with the  bas i c  mul t igr id  a lgori thm 

a s  given i n  [8; sec t ion  41.  L 

It w i l l  a l s o  

11. Resul t s  

L e t  us  now r e c a l l  some of t h e  no ta t ions  of [ 8 ] .  K is t h e  d i s c r e t e  sys t em P 
mat r ix  on the  g r i d  where t h e  so lu t ion  t o  t h e  continuous problem is  sought,  while  

K , q = 1 ,2 , . ** ,  p-1 are t h e  s y s t e m  mat r ices  on t h e  coarser  g r ids .  The 

vec to r s  of unknowns on t h e  subgrids are denoted by uq o r  xq poss ib ly  

wi th  a d d i t i o n a l  supe r sc r ip t s  denoting pos i t i on  i n  a hierachy of mul t igr id  

approximations. Thus, f o r  example x qsk'i denotes  a vec tor  def ined on a 

g r i d  G i n  t h e  ith smoothing sweep of t h e  kth i t e r a t i o n  of t h e  multi-  

g r i d  algorithm. Norm symbols used are I[ I [ ,  
t h e  Q2 norm and 11 11, f o r  the  norm on Hm(SZ). (*,.) is t h e  usua l  

k2 inner product. 

l y  and Ni t h e  number of unknowns i n  t he  var ious  l i n e a r  systems. K has  

dimensions N x N We a l s o  write R(q) f o r  t h e  space of N tup les .  

A l l  of t hese  conventions are f u l l y  explained i n  [ 8 ] .  

q 

Q 
and sometimes [I [ I k 2  f o r  

hi denotes the  mesh s i z e  parameters on Gi respect ive-  

9 

9 9' q 

W e  t u rn  now t o  t h e  necessary modif icat ion which has t o  be made in  

t h e  hypotheses of [81. It is the  p o s i t i v e  d e f i n i t e n e s s  which has  t o  

be a l t e r e d .  

a(u,u) - 2(u , f )  

We requ i r e  here t h a t  t he  p r i n c i p a l  p a r t  of the  form 

should s a t i s f y  t h e  Gdrding inequa l i ty  
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-2  - The earlier hy-pothesis had c = 0 and ensured t h e  p o s i t i v e  d e f i n i t e n e s s  

of t h e  form a (u ,u ) .  The form is now i n d e f i n i t e  and i s  t o  be rendered 

s t a t i o n a r y ,  r a t h e r  than  minimized. I n  a d d i t i o n  t o  (2.1)  i t  i s  necessary  

t o  assume t h a t  t h i s  ex t remiza t ion  problem has  a unique s o l u t i o n ,  as, u n l i k e  

t h e  d e f i n i t e  case, t h i s  cannot be deduced from (2.1) .  It then  fo l lows  from 

(2.1) and the  basic eigenvalue estimates of t h e  f i n i t e  element method [9 ;  

Ch 61 t h a t  f o r  a l l  h s u f f i c i e n t l y  small, K is nonsingular .  The pure 

Neumann problem is no t  included i n  our formulat ion.  I n  a d d i t i o n  t o  (2.1) 

0 

q q 

t h e  hypotheses H 1  and H2 of [8; s e c t i o n  31 spec i fy ing  t h e  LL e r r o r  

estimate and t h e  uni formi ty  p r o p e r t i e s  of t h e  b a s i s  are assumed t o  hold.  

From t h e  uniformity assumption H2 and (2.1) i t  fo l lows  immediately t h a t  

where A > 0 is  a lower bound, independent of h t o  t h e  e igenvalues  

of t h e  mass matrix (see [ a ;  (6 .1 ) ] ) .  
0 q’ 

We may now restate t h e  f i r s t  main r e s u l t  of [ E ]  and prove it under t h e  

c u r r e n t  condi t ions .  Recall t h a t  a )  denotes  t h e  parameter i n  t h e  smoothing 

a lgor i thm,  n’ 

6 ’ 

t he  number of i t e r a t i o n s  of t h e  smoothing a lgor i thm and 

t h e  accuracy parameter f o r  t h e  subsystem s o l u t i o n .  

Theorem 2.1 [c f .  [8; Theorem 5.111 

6o and n no t  dependent on q and a number 0 

a. such tha t  f o r  any f ixed  v - > 2 wi th  a )  = ao, 6’ = 6o and n’ = n 

There e x i s t  numbers 

0 

Proof 

The proof is a verbat im r e p e t i t i o n  of t h a t  i n  [8] up t o  and inc luding  

[8;(7.6)] which w e  r e p e a t  here:  
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, i  = 1 , 2  are bounds on t h e  smoothing ope ra to r  i n  a p a i r  of 2n’ 
(y i , q ,u  

subspaces dependent on t h e  parameter p). Define a. by t h e  equat ion  

2 - 
I n  t h i s  case, wi th  co2Ao 5 c 0 ’  

2c0 2 2 m  h 2c 2h2m 
1 +  - < l + A  

~ B ; ~ + B ~  B2 
yl’q,v - 

Denote t h e  r i g h t  member of t h i s  i n e q u a l i t y  by 

b u t  no t  on p. Also 

M1, dependent on h 

where 8 does not  depend on h. Then 
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and 

Now l e t  L > 1 be  any given f i x e d  number. S e l e c t  6’ = 6o where &O 

i s  some s o l u t i o n  of 

a d  u = po such t h a t  

and 6o are independent of h. Addi t iona l ly ,  l e t  n be so l a r g e  0 

2 t h a t  
- 

and f i n a l l y  h - < ho where ho is chosen s o  t h a t  

c 
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Then v repetitions of the algorithm gives 

and the result is proved. 

All the subsequent results of 181 now go through unchanged. In 

particular the O(N) result, [a; Theorem 8.11, is valid with the new 

hypothesis, and thus the main theorems hold for the indefinite case. 

There is one point to which we must draw attention. In the definite 

case it is safe (though not efficient) to do as many smoothing sweeps as 

desired. The algorithms cannot diverge on this account. In the 

indefinite case this is no longer true. Excessive applications of the 

smoothing algorithm can drive up the low frequency error components to 

the point where the coarse grid corrections cannot control them. This 

feature makes the algorithm more amenable to divergence and somewhat 

harder to operate than in the definite case, which is almost foolproof. 

The problem is most acute when 

Nevertheless it seems that the multigrid method will furnish us with a 

powerful tool for solving indefinite problems and make possible the 

solution of problems which cannot be solved by the elimination methods in 

2 
co is large in some relative sense. 

present use due to the large storage and execution inefficiencies inherent 

in these latter algorithms. Work on implementation is in progress. 

With this, we conclude the present analysis of the indefinite problem. 

It seems reasonable to the author that similar O(N) type results can be 

proved for any properly posed elliptic system, not merely the scalar 

symmetric case we have considered here and in [ 8 ] .  
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